Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Adv Sci (Weinh) ; : e2306730, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704687

RESUMO

Aberrant tumor mechanical microenvironment (TMME), featured with overactivated cancer-associated fibroblasts (CAFs) and excessive extracellular matrix (ECM), severely restricts penetration and accumulation of cancer nanomedicines, while mild-hyperthermia photothermal therapy (mild-PTT) has been developed to modulate TMME. However, photothermal agents also encounter the barriers established by TMME, manifesting in limited penetration and heterogeneous distribution across tumor tissues and ending with attenuated efficiency in TMME regulation. Herein, it is leveraged indocyanine green (ICG)-loaded soft nanogels with outstanding deformability, for efficient tumor penetration and uniform distribution, in combination with mild-PTT to achieve potent TMME regulation by inhibiting CAFs and degrading ECM. As a result, doxorubicin (DOX)-loaded stiff nanogels gain greater benefits in tumor penetration and antitumor efficacy than soft counterparts from softness-mediated mild-PTT. This study reveals the crucial role of nanomedicine mechanical properties in tumor distribution and provides a novel strategy for overcoming the barriers of solid tumors with soft deformable nanogels.

2.
Aging (Albany NY) ; 16(7): 6588-6612, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604156

RESUMO

BACKGROUND: Liver progenitor cells (LPCs) are a subpopulation of cells that contribute to liver regeneration, fibrosis and liver cancer initiation under different circumstances. RESULTS: By performing adenoviral-mediated transfection, CCK-8 analyses, F-actin staining, transwell analyses, luciferase reporter analyses and Western blotting, we observed that TGF-ß promoted cytostasis and partial epithelial-mesenchymal transition (EMT) in LPCs. In addition, we confirmed that TGF-ß activated the Smad and MAPK pathways, including the Erk, JNK and p38 MAPK signaling pathways, and revealed that TGFß-Smad signaling induced growth inhibition and partial EMT, whereas TGFß-MAPK signaling had the opposite effects on LPCs. We further found that the activity of Smad and MAPK signaling downstream of TGF-ß was mutually restricted in LPCs. Mechanistically, we found that TGF-ß activated Smad signaling through serine phosphorylation of both the C-terminal and linker regions of Smad2 and 3 in LPCs. Additionally, TGFß-MAPK signaling inhibited the phosphorylation of Smad3 but not Smad2 at the C-terminus, and it reinforced the linker phosphorylation of Smad3 at T179 and S213. We then found that overexpression of mutated Smad3 at linker phosphorylation sites intensifies TGF-ß-induced cytostasis and EMT, mimicking the effects of MAPK inhibition in LPCs, whereas mutation of Smad3 at the C-terminus caused LPCs to blunt TGF-ß-induced cytostasis and partial EMT. CONCLUSION: These results suggested that TGF-ß downstream of Smad3 and MAPK signaling were mutually antagonistic in regulating the viability and partial EMT of LPCs. This antagonism may help LPCs overcome the cytostatic effect of TGF-ß under fibrotic conditions and maintain partial EMT and progenitor phenotypes.


Assuntos
Transição Epitelial-Mesenquimal , Fígado , Sistema de Sinalização das MAP Quinases , Proteína Smad3 , Células-Tronco , Fator de Crescimento Transformador beta , Proteína Smad3/metabolismo , Células-Tronco/metabolismo , Animais , Fator de Crescimento Transformador beta/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fígado/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fosforilação , Camundongos , Transdução de Sinais
3.
Biomaterials ; 306: 122497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310827

RESUMO

High reactive oxygen species (ROS) levels provide a therapeutic opportunity to eradicate cancer stem cells (CSCs), a population of cells responsible for tumorigenesis, progression, metastasis, and recurrence. However, enhanced antioxidant systems in this population of cells attenuate ROS-inducing therapies. Here, we developed a nanoparticle-assisted combination therapy to eliminate CSCs by employing photodynamic therapy (PDT) to yield ROS while disrupting ROS defense with glutaminolysis inhibition. Specifically, we leveraged an oleic acid-hemicyanine conjugate (CyOA) as photosensitizer, a new entity molecule HYL001 as glutaminolysis inhibitor, and a biocompatible folic acid-hydroxyethyl starch conjugate (FA-HES) as amphiphilic surfactant to construct cellular and mitochondrial hierarchical targeting nanomedicine (COHF NPs). COHF NPs inhibited glutaminolysis to reduce intracellular ROS scavengers, including glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH), and to blunt oxidative phosphorylation (OXPHOS) for oxygen-conserved PDT. Compared to COLF NPs without glutaminolysis inhibitor, COHF NPs exhibited higher phototoxicity to breast cancer stem cells (BCSCs) both in vitro and in vivo. More importantly, we corroborated that marketed glutaminolysis inhibitors, such as CB839 and V9302, augment the clinically used photosensitizer (Hiporfin) for BCSCs elimination. This study develops a potent CSCs targeting strategy by combining glutaminolysis inhibition with PDT and provides significant implications for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Terapia Combinada , Glutationa , Linhagem Celular Tumoral , Nanopartículas/química , Neoplasias/tratamento farmacológico
4.
J Neurochem ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344886

RESUMO

In this study, we investigated the potential involvement of TNFSF9 in reperfusion injury associated with ferroptosis in acute ischaemic stroke patients, mouse models and BV2 microglia. We first examined TNFSF9 changes in peripheral blood from stroke patients with successful reperfusion, and constructed oxygen-glucose deprivation-reperfusion (OGD-R) on BV2 microglia, oxygen-glucose deprivation for 6 h followed by reoxygenation and re-glucose for 24 h, and appropriate over-expression or knockdown of TNFSF9 manipulation on BV2 cells and found that in the case of BV2 cells encountering OGD-R over-expression of TNFSF9 resulted in increased BV2 apoptosis. Still, the knockdown of TNFSF9 ameliorated apoptosis and ferroptosis. In an in vivo experiment, we constructed TNFSF9 over-expression or knockout mice by intracerebral injection of TNFSF9-OE or sh-TNFSF9 adenovirus. We performed the middle cerebral artery occlusion (MCAO) model on day four, 24 h after ligation of the proximal artery, for half an hour to recanalize. As luck would have it, over-expression of TNFSF9 resulted in increased brain infarct volumes, neurological function scores and abnormalities in TNFSF9-related TRAF1 and ferroptosis-related pathways, but knockdown of TNFSF9 improved brain infarcts in mice as well as reversing TNFSF9-related signalling pathways. In conclusion, our data provide the first evidence that TNFSF9 triggers microglia activation by activating the ferroptosis signalling pathway following ischaemic stroke, leading to brain injury and neurological deficits.

5.
Cancer Gene Ther ; 31(4): 586-598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38267623

RESUMO

Glutamate-NMDAR receptors (GRINs) have been reported to influence cancer immunogenicity; however, the relationship between GRIN alterations and the response to immune checkpoint inhibitors (ICIs) has not been determined. This study combined clinical characteristics and mutational profiles from multiple cohorts to form a discovery cohort (n = 901). The aim of this study was to investigate the correlation between the mutation status of the GRIN gene and the response to ICI therapy. Additionally, an independent ICI-treated cohort from the Memorial Sloan Kettering Cancer Center (MSKCC, N = 1513) was used for validation. Furthermore, this study explored the associations between GRIN2A mutations and intrinsic and extrinsic immunity using multiomics analysis. In the discovery cohort, patients with GRIN2A-MUTs had improved clinical outcomes, as indicated by a higher objective response rate (ORR: 36.8% vs 25.8%, P = 0.020), durable clinical benefit (DCB: 55.2% vs 38.7%, P = 0.005), prolonged progression-free survival (PFS: HR = 0.65; 95% CI 0.49 to 0.87; P = 0.003), and increased overall survival (OS: HR = 0.67; 95% CI 0.50 to 0.89; P = 0.006). Similar results were observed in the validation cohort, in which GRIN2A-MUT patients exhibited a significant improvement in overall survival (HR = 0.66; 95% CI = 0.49 to 0.88; P = 0.005; adjusted P = 0.045). Moreover, patients with GRIN2A-MUTs exhibited an increase in tumor mutational burden, high expression of costimulatory molecules, increased activity of antigen-processing machinery, and infiltration of various immune cells. Additionally, gene sets associated with cell cycle regulation and the interferon response were enriched in GRIN2A-mutated tumors. In conclusion, GRIN2A mutation is a novel biomarker associated with a favorable response to ICIs in multiple cancers.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Interferons , Mutação , Biomarcadores Tumorais/genética
6.
Biotechnol Biofuels Bioprod ; 17(1): 12, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281968

RESUMO

A large amount of greenhouse gases, such as carbon dioxide and methane, are released during the production process of bioethanol and biogas. Converting CO2 into methane is a promising way of capturing CO2 and generating high-value gas. At present, CO2 methanation technology is still in the early stage. It requires high temperature (300-400 â„ƒ) and pressure (> 1 MPa), leading to high cost and energy consumption. In this study, a new catalyst, Ni-Fe/Al-Ti, was developed. Compared with the activity of the common Ni/Al2O3 catalyst, that of the new catalyst was increased by 1/3, and its activation temperature was reduced by 100℃. The selectivity of methane was increased to 99%. In the experiment using simulated fermentation gas, the catalyst showed good catalytic activity and durability at a low temperature and atmospheric pressure. Based on the characterization of catalysts and the study of reaction mechanisms, this article innovatively proposed a Ni-Fe/Al-Ti quaternary catalytic system. Catalytic process was realized through the synergism of Al-Ti composite support and Ni-Fe promotion. The oxygen vacancies on the surface of the composite carrier and the higher activity metals and alloys promoted by Fe accelerate the capture and reduction of CO2. Compared with the existing catalysts, the new Ni-Fe/Al-Ti catalyst can significantly improve the methanation efficiency and has great practical application potential.

7.
Stem Cells Int ; 2023: 2826815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964983

RESUMO

The latest 2021 WHO classification redefines glioblastoma (GBM) as the hierarchical reporting standard by eliminating glioblastoma, IDH-mutant and only retaining the tumor entity of "glioblastoma, IDH-wild type." Knowing that subclassification of tumors based on molecular features is supposed to facilitate the therapeutic choice and increase the response rate in cancer patients, it is necessary to carry out molecular classification of the newly defined GBM. Although differentiation trajectory inference based on single-cell sequencing (scRNA-seq) data holds great promise for identifying cell heterogeneity, it has not been used in the study of GBM molecular classification. Single-cell transcriptome sequencing data from 10 GBM samples were used to identify molecular classification based on differentiation trajectories. The expressions of identified features were validated by public bulk RNA-sequencing data. Clinical feasibility of the classification system was examined in tissue samples by immunohistochemical (IHC) staining and immunofluorescence, and their clinical significance was investigated in public cohorts and clinical samples with complete clinical follow-up information. By analyzing scRNA-seq data of 10 GBM samples, four differentiation trajectories from the glioblastoma stem cell-like (GSCL) cluster were identified, based on which malignant cells were classified into five characteristic subclusters. Each cluster exhibited different potential drug sensitivities, pathways, functions, and transcriptional modules. The classification model was further examined in TCGA and CGGA datasets. According to the different abundance of five characteristic cell clusters, the patients were classified into five groups which we named Ac-G, Class-G, Neo-G, Opc-G, and Undiff-G groups. It was found that the Undiff-G group exhibited the worst overall survival (OS) in both TCGA and CGGA cohorts. In addition, the classification model was verified by IHC staining in 137 GBM samples to further clarify the difference in OS between the five groups. Furthermore, the novel biomarkers of glioblastoma stem cells (GSCs) were also described. In summary, we identified five classifications of GBM and found that they exhibited distinct drug sensitivities and different prognoses, suggesting that the new grouping system may be able to provide important prognostic information and have certain guiding significance for the treatment of GBM, and identified the GSCL cluster in GBM tissues and described its characteristic program, which may help develop new potential therapeutic targets for GSCs in GBM.

8.
Research (Wash D C) ; 6: 0223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680304

RESUMO

Photodynamic therapy with reactive oxygen species production is a prospective treatment to combat cancer stem cells (CSCs). However, the innate drawbacks, including short lifetime and diffusion distance of reactive oxygen species and hypoxia within solid tumors, have become bottlenecks for clinical applications of photodynamic therapy. Here, we develop a mitochondria-targeting hemicyanine-oleic acid conjugate (CyOA), which can self-assemble into supramolecular nanoparticles (NPs) without any exogenous excipients. CyOA is also shown for targeting the mitochondrial complex II protein succinate dehydrogenase to inhibit oxidative phosphorylation and reverse tumor hypoxia, resulting in 50.4-fold higher phototoxicity against breast cancer stem cells (BCSCs) compared to SO3-CyOA NPs that cannot target to mitochondria. In 4T1 and BCSC tumor models, CyOA NPs achieve higher tumor inhibition and less lung metastasis nodules compared to the clinically used photosensitizer Hiporfin. This study develops a self-assembled small molecule that can serve as both oxidative phosphorylation inhibitor and photosensitizer for eradication of CSCs and treatment of solid tumors.

9.
Kidney Int ; 104(4): 769-786, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482091

RESUMO

Tubulointerstitial fibrosis is considered the final convergent pathway of progressive chronic kidney diseases (CKD) regardless of etiology. However, mechanisms underlying kidney injury-induced fibrosis largely remain unknown. Recent studies have indicated that transcriptional intermediary factor 1γ (TIF1γ) inhibits the progression of fibrosis in other organs. Here, we found that TIF1γ was highly expressed in the cytoplasm and nucleus of the kidney proximal tubule. Interestingly, we found tubular TIF1γ expression was decreased in patients with CKD, including those with diabetes, hypertension, and IgA nephropathy, and in mouse models with experimental kidney fibrosis (unilateral ureteral obstruction [UUO], folic acid nephropathy [FAN], and aristolochic acid-induced nephrotoxicity). Tubule-specific knock out of TIF1γ in mice exacerbated UUO- and FAN-induced tubular cell polyploidy and subsequent fibrosis, whereas overexpression of kidney TIF1γ protected mice against kidney fibrosis. Mechanistically, in tubular epithelial cells, TIF1γ exerted an antifibrotic role via transforming growth factor-ß (TGF-ß)-dependent and -independent signaling. TIF1γ hindered TGF-ß signaling directly by inhibiting the formation and activity of the transcription factor Smad complex in tubular cells, and we discovered that TIF1γ suppressed epidermal growth factor receptor (EGFR) signaling upstream of TGF-ß signaling in tubular cells by ubiquitylating EGFR at its lysine 851/905 sites thereby promoting EGFR internalization and lysosomal degradation. Pharmacological inhibition of EGFR signaling attenuated exacerbated polyploidization and the fibrotic phenotype in mice with tubule deletion of TIF1γ. Thus, tubular TIF1γ plays an important role in kidney fibrosis by suppressing profibrotic EGFR and TGF-ß signaling. Hence, our findings suggest that maintaining homeostasis of tubular TIF1γ may be a new therapeutic option for treating tubulointerstitial fibrosis and subsequent CKD.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Receptores ErbB/genética , Fibrose , Rim/metabolismo , Análise de Mediação , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
10.
Biomater Sci ; 11(13): 4471-4489, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37221958

RESUMO

Over the past several decades, the importance of the tumor mechanical microenvironment (TMME) in cancer progression or cancer therapy has been recognized by researchers worldwide. The abnormal mechanical properties of tumor tissues include high mechanical stiffness, high solid stress, and high interstitial fluid pressure (IFP), which form physical barriers resulting in suboptimal treatment efficacy and resistance to different types of therapy by preventing drugs infiltrating the tumor parenchyma. Therefore, preventing or reversing the establishment of the abnormal TMME is critical for cancer therapy. Nanomedicines can enhance drug delivery by exploiting the enhanced permeability and retention (EPR) effect, so nanomedicines that target and modulate the TMME can further boost antitumor efficacy. Herein, we mainly discuss the nanomedicines that can regulate mechanical stiffness, solid stress, and IFP, with a focus on how nanomedicines change abnormal mechanical properties and facilitate drug delivery. We first introduce the formation, characterizing methods and biological effects of tumor mechanical properties. Conventional TMME modulation strategies will be briefly summarized. Then, we highlight representative nanomedicines capable of modulating the TMME for augmented cancer therapy. Finally, current challenges and future opportunities for regulating the TMME with nanomedicines will be provided.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/farmacologia , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Sistemas de Liberação de Medicamentos/métodos , Microambiente Tumoral
11.
Adv Sci (Weinh) ; 10(21): e2301278, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37114827

RESUMO

Tumor starvation induced by intratumor glucose depletion emerges as a promising strategy for anticancer therapy. However, its antitumor potencies are severely compromised by intrinsic tumor hypoxia, low delivery efficiencies, and undesired off-target toxicity. Herein, a multifunctional cascade bioreactor (HCG), based on the self-assembly of pH-responsive hydroxyethyl starch prodrugs, copper ions, and glucose oxidase (GOD), is engineered, empowered by hyperbaric oxygen (HBO) for efficient cooperative therapy against aggressive breast cancers. Once internalized by tumor cells, HCG undergoes disassembly and releases cargoes in response to acidic tumor microenvironment. Subsequently, HBO activates GOD-catalyzed oxidation of glucose to H2 O2 and gluconic acid by ameliorating tumor hypoxia, fueling copper-catalyzed •OH generation and pH-responsive drug release. Meanwhile, HBO degrades dense tumor extracellular matrix, promoting tumor accumulation and penetration of HCG. Moreover, along with the consumption of glucose and the redox reaction of copper ions, the antioxidant capacity of tumor cells is markedly reduced, collectively boosting oxidative stress. As a result, the combination of HCG and HBO can not only remarkably suppress the growth of orthotopic breast tumors but also restrain pulmonary metastases by inhibiting cancer stem cells. Considering the clinical accessibility of HBO, this combined strategy holds significant translational potentials for GOD-based therapies.


Assuntos
Neoplasias da Mama , Oxigenoterapia Hiperbárica , Radiossensibilizantes , Humanos , Feminino , Cobre , Oxigênio , Neoplasias da Mama/terapia , Glucose Oxidase/farmacologia , Glucose/metabolismo , Microambiente Tumoral
12.
J Control Release ; 356: 256-271, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871643

RESUMO

Cancer stem cells (CSCs), enabled to self-renew, differentiate, and initiate the bulk tumor, are recognized as the culprit of treatment resistance, metastasis, and recurrence. Simultaneously eradicating CSCs and bulk cancer cells is crucial for successful cancer therapy. Herein, we reported that doxorubicin (Dox) and erastin co-loaded hydroxyethyl starch-polycaprolactone nanoparticles (DEPH NPs) eliminated CSCs and cancer cells by regulating redox status. We found that an excellently synergistic effect existed when Dox and erastin were co-delivered by DEPH NPs. Specifically, erastin could deplete intracellular glutathione (GSH), thereby inhibiting the efflux of intracellular Dox and boosting Dox-induced reactive oxygen species (ROS) to amplify redox imbalance and oxidative stress. The high ROS levels restrained CSCs self-renewal via downregulating Hedgehog pathways, promoted CSCs differentiation, and rendered differentiated cancer cells vulnerable to apoptosis. As such, DEPH NPs significantly eliminated not only cancer cells but more importantly CSCs, contributing to suppressed tumor growth, tumor-initiating capacity, and metastasis, in various tumor models of triple negative breast cancer. This study demonstrates that the combination of Dox and erastin is potent in elimination of both cancer cells and CSCs, and that DEPH NPs represent a promising treatment against CSCs-rich solid tumors.


Assuntos
Nanopartículas , Neoplasias , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proteínas Hedgehog , Doxorrubicina , Amido
13.
J Control Release ; 356: 288-305, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870542

RESUMO

Cancer stem cells (CSCs) have been recognized as the culprit for tumor progression, treatment resistance, metastasis, and recurrence while redox homeostasis represents the Achilles' Heel of CSCs. However, few drugs or formulations that are capable of elevating oxidative stress have achieved clinical success for eliminating CSCs. Here, we report hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@HES NPs), which conspicuously suppress CSCs not only in vitro but also in numerous tumor models in vivo. Furthermore, CuET@HES NPs effectively inhibit CSCs in fresh tumor tissues surgically excised from hepatocellular carcinoma patients. Mechanistically, we uncover that hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals via copper­oxygen coordination interactions, thereby promoting copper-diethyldithiocarbamate colloidal stability, cellular uptake, intracellular reactive oxygen species production, and CSCs apoptosis. As all components are widely used in clinics, CuET@HES NPs represent promising treatments for CSCs-rich solid malignancies and hold great clinical translational potentials. This study has critical implications for design of CSCs targeting nanomedicines.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Ditiocarb/química , Ditiocarb/farmacologia , Ditiocarb/uso terapêutico , Cobre/química , Nanopartículas/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Amido/química , Linhagem Celular Tumoral , Derivados de Hidroxietil Amido/farmacologia , Derivados de Hidroxietil Amido/uso terapêutico , Células-Tronco Neoplásicas
14.
Nat Commun ; 14(1): 1437, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918575

RESUMO

Nanomedicine has been developed for cancer therapy over several decades, while rapid clearance from blood circulation by reticuloendothelial system (RES) severely limits nanomedicine antitumour efficacy. We design a series of nanogels with distinctive stiffness and investigate how nanogel mechanical properties could be leveraged to overcome RES. Stiff nanogels are injected preferentially to abrogate uptake capacity of macrophages and temporarily block RES, relying on inhibition of clathrin and prolonged liver retention. Afterwards, soft nanogels deliver doxorubicin (DOX) with excellent efficiency, reflected in high tumour accumulation, deep tumour penetration and outstanding antitumour efficacy. In this work, we combine the advantage of stiff nanogels in RES-blockade with the superiority of soft nanogels in drug delivery leads to the optimum tumour inhibition effect, which is defined as mechano-boosting antitumour strategy. Clinical implications of stiffness-dependent RES-blockade are also confirmed by promoting antitumour efficacy of commercialized nanomedicines, such as Doxil and Abraxane.


Assuntos
Doxorrubicina , Nanomedicina , Nanogéis , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Macrófagos
15.
Pharmacol Res ; 190: 106740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958408

RESUMO

Cancer stem cells (CSCs) have been blamed as the main culprit of tumor initiation, progression, metastasis, chemoresistance, and recurrence. However, few anti-CSCs agents have achieved clinical success so far. Here we report a novel derivative of lonidamine (LND), namely HYL001, which selectively and potently inhibits CSCs by targeting mitochondria, with 380-fold and 340-fold lower IC50 values against breast cancer stem cells (BCSCs) and hepatocellular carcinoma stem cells (HCSCs), respectively, compared to LND. Mechanistically, we reveal that HYL001 downregulates glutaminase (GLS) expression to block glutamine metabolism, blunt tricarboxylic acid cycle, and amplify mitochondrial oxidative stress, leading to apoptotic cell death. Therefore, HYL001 displays significant antitumor activity in vivo, both as a single agent and combined with paclitaxel. Furthermore, HYL001 represses CSCs of fresh tumor tissues derived from liver cancer patients. This study provides critical implications for CSCs biology and development of potent anti-CSCs drugs.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Glutamina/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas , Linhagem Celular Tumoral
16.
Acta Biomater ; 157: 428-441, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549633

RESUMO

Ovarian cancer (OC) ranks first among gynecologic malignancies in terms of mortality. The benefits of poly (ADP-ribose) polymerase (PARP) inhibitors appear to be limited to OC with BRCA mutations. Concurrent administration of WEE1 inhibitors (eg, adavosertib (Ada)) and PARP inhibitors (eg, olaparib (Ola)) effectively suppress ovarian tumor growth regardless of BRCA mutation status, but is poorly tolerated. Henceforth, we aimed to seek a strategy to reduce the toxic effects of this combination by taking advantage of the mesoporous polydopamine (MPDA) nanoparticles with good biocompatibility and high drug loading capacity. In this work, we designed a tumor-targeting peptide TMTP1 modified MPDA-based nano-drug delivery system (TPNPs) for targeted co-delivery of Ada and Ola to treat OC. Ada and Ola could be effectively loaded into MPDA nanoplatform and showed tumor microenvironment triggered release behavior. The nanoparticles induced more apoptosis in OC cells, and significantly enhanced the synergy of combination therapy with Ada plus Ola in murine OC models. Moreover, the precise drug delivery of TPNPs towards tumor cells significantly diminished the toxic side effects caused by concurrent administration of Ada and Ola. Co-delivery of WEE1 inhibitors and PARP inhibitors via TPNPs represents a promising approach for the treatment of OC. STATEMENT OF SIGNIFICANCE: Combination therapy of WEE1 inhibitors (eg, Ada) with PARP inhibitors (eg, Ola) effectively suppress ovarian tumor growth regardless of BRCA mutation status. However, poor tolerability limits its clinical application. To address this issue, we construct a tumor-targeting nano-drug delivery system (TPNP) for co-delivery of Ada and Ola. The nanoparticles specifically target ovarian cancer and effectively enhance the antitumor effect while minimizing undesired toxic side effects. As the first nanomedicine co-loaded with a WEE1 inhibitor and a PARP inhibitor, TPNP-Ada-Ola may provide a promising and generally applicable therapeutic strategy for ovarian cancer patients.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Sistemas de Liberação de Fármacos por Nanopartículas/efeitos adversos , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Microambiente Tumoral
17.
J Neurointerv Surg ; 15(10): 977-982, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36270789

RESUMO

BACKGROUND: Alteplase before thrombectomy for patients with large vessel occlusion stroke raises concerns regarding an increased risk of intracranial hemorrhage (ICH), but the details of this relationship are not well understood. METHODS: This was a secondary analysis of the DIRECT-MT trial. ICH and its subtypes were independently reviewed and classified according to the Heidelberg Bleeding Classification. The effects of alteplase before thrombectomy on ICH and ICH subtypes occurrence were evaluated using logistic regression. Clinical and imaging characteristics that may modify these effects were exploratorily tested. RESULTS: Among 591 patients, any ICH occurred in 254 (43.0%), including hemorrhagic infarction type 1 in 12 (2.1%), hemorrhagic infarction type 2 in 127 (21.7%), parenchymal hematoma type 1 in 34 (5.8%), parenchymal hematoma type 2 in 50 (8.6%), and other hemorrhage types (3a-3c) in 24 (4.1%). Similar ICH frequencies were observed with combined alteplase and thrombectomy versus thrombectomy only (134/292 (45.9%) vs 120/299 (40.1%); OR 1.27, 95% CI 0.91 to 1.75, P=0.16), but patients treated with alteplase had a higher parenchymal hematoma rate (51/287 (17.8%) vs 33/297 (11.1%); OR 1.75, 95% CI 1.08 to 2.85, P=0.024). In the adjusted model, difference in parenchymal hematoma occurrence between groups remained significant (adjusted OR 1.71, 95% CI 1.00 to 2.92, P=0.049). Patients with history of diabetes (Pinteraction=0.048), hypertension (Pinteraction=0.02), antiplatelet therapy (Pinteraction=0.02), anticoagulation therapy (Pinteraction=0.04), and statin administration (Pinteraction=0.02) harbored a higher ICH rate when they received combination therapy. CONCLUSIONS: Our data showed that in the DIRECT-MT trial, alteplase did not increase overall ICH for large vessel occlusion patients treated with thrombectomy, but it increased the parenchymal hematoma rate.


Assuntos
Isquemia Encefálica , Diabetes Mellitus Tipo 2 , Acidente Vascular Cerebral , Humanos , Ativador de Plasminogênio Tecidual/efeitos adversos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/cirurgia , Fibrinolíticos/efeitos adversos , Isquemia Encefálica/terapia , Resultado do Tratamento , Hemorragias Intracranianas/induzido quimicamente , Trombectomia/efeitos adversos , Trombectomia/métodos , Hematoma/etiologia , Diabetes Mellitus Tipo 2/complicações
18.
J Control Release ; 353: 391-410, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473606

RESUMO

Small molecular prodrug-based nanomedicines with high drug-loading efficiency and tumor selectivity have attracted great attention for cancer therapy against solid tumors, including triple negative breast cancers (TNBC). However, abnormal tumor mechanical microenvironment (TMME) severely restricts antitumor efficacy of prodrug nanomedicines by limiting drug delivery and fostering cancer stem cells (CSCs). Herein, we employed carbamate disulfide bridged doxorubicin dimeric prodrug as pharmaceutical ingredient, marketed IR780 iodide as photothermal agent, and biocompatible hydroxyethyl starch-folic acid conjugates as amphiphilic surfactant to prepare a theranostic nanomedicine (FDINs), which could actively target at TNBC 4T1 tumor tissues and achieve reduction-responsive drug release with high glutathione concentration in cancer cells and CSCs. Importantly, in addition to directly causing damage to cancer cells and sensitizing chemotherapy, FDINs-mediated photothermal effect regulates aberrant TMME via reducing cancer associated fibroblasts and depleting extracellular matrix proteins, thereby normalizing intratumor vessel structure and function to facilitate drug and oxygen delivery. Furthermore, FDINs potently eliminate CSCs by disrupting unique CSCs niche and consuming intracellular GSH in CSCs. As a result, FDINs significantly suppress tumor growth in both subcutaneous and orthotopic 4T1 tumors. This study provides novel insights on rational design of prodrug nanomedicines for superior therapeutic effect against stroma- and CSCs-rich solid malignancies.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/uso terapêutico , Ácido Fólico , Medicina de Precisão , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Doxorrubicina/uso terapêutico , Nanomedicina Teranóstica , Amido , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Eur Radiol ; 33(1): 135-143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35849176

RESUMO

OBJECTIVES: Predictors of malignant middle cerebral artery infarction (mMCAi) in patients after intravenous thrombolysis were well documented, but the risk factors of mMCAi after endovascular thrombectomy (EVT) were not fully explored. Therefore, the present study aimed to investigate the predictors of mMCAi after EVT in stroke patients. METHODS: This was a secondary analysis of the DIRECT-MT trial. Patients who underwent EVT for the occlusions of MCA and/or intracranial internal carotid artery were analyzed. Primary outcome was the occurrence of mMCAi after EVT. Demographic, clinical, imaging, and treatment data were recorded, and multivariate logistic regression analysis was used to identify independent predictors. All of the candidate predictors were included, and forward elimination was applied to establish the most effective predictive model. Predictive ability and calibration of the model were assessed using the area under the receiver operating characteristic curve (AUC) and Hosmer-Lemeshow test, respectively. RESULTS: Of 559 enrolled patients, 74 (13.2%) patients developed mMCAi. Predictors of mMCAi included unsuccessful reperfusion, higher serum glucose, lower Alberta Stroke Project Early Computed Tomography Change Score (ASPECTS), higher clot burden score (CBS), lower collateral score, and higher pass number of thrombectomy device. AUC of predictive model integrating all independent variables was 0.836. The Hosmer-Lemeshow test showed appropriate calibration (p = 0.859). CONCLUSIONS: Reperfusion, serum glucose, ASPECTS, CBS, collateral, and pass number of thrombectomy device were associated with the occurrence of mMCAi in stroke patients after EVT, while alteplase treatment was not. Our findings might facilitate the early identification and management of stroke patients at a high risk of mMCAi. KEY POINTS: • A total of 13.2% of stroke patients with large vessel occlusion of anterior circulation developed mMCAi after EVT. • The occurrence of mMCAi had a definite negative impact on the outcome for stroke patients. • Reperfusion, serum glucose, ASPECTS, CBS, collateral score, and the pass number of thrombectomy device were associated with the occurrence of mMCAi after EVT in stroke patients.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/etiologia , Procedimentos Endovasculares/métodos , Glucose , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/terapia , Estudos Retrospectivos , Acidente Vascular Cerebral/etiologia , Trombectomia/métodos , Resultado do Tratamento , Ensaios Clínicos como Assunto , Análise de Dados Secundários
20.
J Neurointerv Surg ; 15(e2): e184-e189, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36171101

RESUMO

BACKGROUND: The major concern for bridging intravenous thrombolysis (IVT) before endovascular thrombectomy (EVT) is the potentially increased risk of symptomatic intracerebral hemorrhage (sICH). Thus we conducted this study to clarify whether evaluation of individual bleeding risk could assist in the decision to perform IVT before EVT. METHODS: The study was a subgroup analysis of a randomized trial evaluating the safety and efficacy of IVT before EVT. The SEDAN (blood Sugar, Early infarct signs and (hyper) Dense cerebral artery sign, Age, and National Institutes of Health Stroke Score) score, GRASPS (Glucose, Race, Age, Sex, systolic blood Pressure, and Severity of stroke) score, and SITS-SICH (Safe Implementation of Thrombolysis in Stroke-Symptomatic Intracerebral Hemorrhage) score were used to evaluate individual bleeding risk. The primary outcome was functional independence, defined as a modified Rankin Scale (mRS) score of 0-2 at 90 days. Binary logistic regression with an interaction term was used to estimate treatment effect modification to clarify whether direct EVT was more beneficial in patients with a higher sICH risk, while adjunctive IVT before EVT was more beneficial in patients with a lower sICH risk. RESULTS: Among 658 randomized patients, 639 (361 men, 56.5%; median age 69 (IQR 61-76) years) were included in the study. With the SITS-SICH score as an example, adjusted OR for functional independence with EVT alone was 1.12 (95% CI 0.68 to 1.82) in patients with a lower sICH risk (SITS-SICH score 0-4) and 0.92 (0.53 to 1.60) in those with a higher sICH risk (SITS-SICH score 5-15). There were no treatment-by-bleeding-risk interactions for all dichotomized mRS outcomes based on the three scores (all p>0.05). CONCLUSIONS: We found no evidence that clinicians can decide whether to omit IVT before EVT based on an individualized assessment of bleeding risk.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Masculino , Humanos , Idoso , Terapia Trombolítica/efeitos adversos , Isquemia Encefálica/terapia , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Hemorragia Cerebral/induzido quimicamente , Trombectomia/efeitos adversos , Tomada de Decisões , Resultado do Tratamento , Fibrinolíticos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA